# Compere and Fiorucci Chapter 2: 3d gravity
\[Links: [arXiv](https://arxiv.org/abs/1801.07064), [PDF](https://arxiv.org/pdf/1801.07064.pdf)\]
## 2.1 Overview of properties
- solution space
- in vacuum -> constant curvature
- non-trivial topology + boundary -> still contain black holes and infinite dimensional asymptotic symmetry
- no bulk degrees of freedom
- $R_{\mu \nu \alpha \beta}=W_{\mu \nu \alpha \beta}+\frac{2}{n-2}\left(g_{\alpha[\mu} R_{\nu] \beta}+R_{\alpha[\mu} g_{\nu] \beta}\right)-\frac{2}{(n-1)(n-2)} R g_{\alpha[\mu} g_{\nu] \beta}$ ($n=3$ in 3d gravity)
- outside sources, $R_{\mu\nu}=0$ -> Weyl tensor contains the gravitational effects
- -> in 3d, $R_{\mu\nu}$ has $\frac{1}{2}\times 3\times 4 =6$ which equals the number of independent degrees of freedom in $R_{abcd}$
- => no gravitational degrees of freedom
- homogeneity
- vacuum equation: $G_{\mu \nu}+\Lambda g_{\mu \nu}=R_{\mu \nu}+\left(\Lambda-\frac{R}{2}\right) g_{\mu \nu}=0$
- => $R=6\Lambda$
- => (using the Riemann tensor decomposition above but now without the Weyl tensor)
- => $R_{\alpha \beta \mu \nu} \approx \Lambda\left(g_{\alpha \mu}g_{\beta \nu}-g_{\alpha \nu} g_{\beta \mu}\right)$
## 2.2 AAdS
- global AdS
- asymptotically AdS
- [[0086 Banados-Teitelboim-Zanelli black hole]]
- [[0099 Quotient method in AdS3]]
- phase space
- ![[Rsc0004_phase.png|200]]
- $M<0$ and $J=0$: conical defects (particles)
- $M<-1/8G$: conical excess and should be discarded (unbounded from below)
- $M<0$ and $J\ne0$: spinning particles with mass $M$ and angular momentum $J$
- boundary conditions
- Brown-Henneaux BC
- fix boundary metric in [[0011 Fefferman-Graham expansion]]
- [[0085 Asymptotic symmetry of AdS3]]
- phase space (from FG point of view)
- charges
- use knowledge from [[Rsc0005 CompereFiorucci Ch1 Surface charges]]
- summary in [[0085 Asymptotic symmetry of AdS3]]
## Related topics
- [[0073 AdS3-CFT2]]