# Soft theorems
Soft theorems are statements about scattering amplitudes in the limit where certain momenta or energies become large. They play an important role in [[0010 Celestial holography|celestial holography]]. Soft theorems are also essential for controlling [[0295 Infrared divergences in scattering amplitude|IR divergences]] and getting IR finite inclusive cross-sections.
## General refs
- reviews
- [[2017#Strominger (Lectures)]]
- [[2021#Miller (Review)]]
- conformal soft theorems
- [[2018#Donnay, Puhm, Strominger]]
- $U(1)$ KM symmetry of gauge theory and BMS supertranslation symmetry of gravity are generated by spin-1 and spin-2 primaries with $\Delta=1$
- [[2019#Pate, Raclariu, Strominger]]
- YM conformal soft theorem
- [[2019#Puhm]]
- [[2019#Guevara]] notes
- [[2019#Fan, Fotopoulos, Taylor]]
- [[0328 w(1+infinity)|w(1+infinity)]]
- [[2021#Guevara, Himwich, Pate, Strominger]]
- [[0453 Jacobi identity or associativity of celestial OPE|Jacobi identity]]
- [[CheungDelaFuenteSundrum2016]]
- [[2020#Himwich, Narayanan, Pate, Paul, Strominger]]
## Understanding soft theorems
- [[2020#DeLisle, Wilson-Gerow, Stamp]]
- [[2019#Adamo, Mason, Sharma]]
- in terms of features on the [[0022 Celestial sphere]]
- [[Kalyanapuram202105]][](https://arxiv.org/abs/2105.04314)
- [[Kalyanapuram202107]][](https://arxiv.org/pdf/2107.06660.pdf)
- relating gravity subsubleading to gauge subleading
- [[BenekeHagerSzafron202110]][](https://arxiv.org/pdf/2110.02969.pdf)
- [[0509 Soft-collinear EFT|soft-collinear EFT]]
- [[BenekeHagerSzafron202112]][](https://arxiv.org/pdf/2112.04983.pdf): an effective theory of soft and collinear gravity
- action principle
- [[2023#Kim, Kraus, Monten, Myers]]
- [[0331 BRST quantisation|BRST]] formulation
- [[2024#Baulieu, Wetzstein]]
## Examples (tree-level)
### General
- infinite soft theorems
- [[LiLinZhang2018]]
- [[2018#Hamada, Shiu]]
- [[2021#Guevara, Himwich, Pate, Strominger]] currents from poles
- [[2021#Strominger]] $\rm w_{1+\infty}$
- geometric soft theorems
- [[CheungHelsetParra-Martinez2021]][](https://arxiv.org/pdf/2111.03045.pdf)
- [[2022#Cheung, Helset, Parra-Martinez]]
- [[2024#Derda, Helset, Parra-Martinez]]
### Gravitons
- leading soft graviton theorem <-> BMS supertranslation
- soft theorem itself [[Weinberg1965]]
- [[HeLysovMitraStrominger2014]]
- $\Delta=1$
- $\mathcal{M}_{n+1}\left(k_{1}, k_{2}, \ldots k_{n}, q\right)=S^{(0)} \mathcal{M}_{n}\left(k_{1}, k_{2}, \ldots k_{n}\right)+\mathcal{O}\left(q^{0}\right)$ with $S^{(0)} \equiv \sum_{a=1}^{n} \frac{E_{\mu \nu} k_{a}^{\mu} k_{a}^{\nu}}{q \cdot k_{a}}$
- subleading soft graviton <-> [[0032 Virasoro algebra]] symmetry
- $\Delta=0$
- $\mathcal{M}_{n+1}\left(k_{1}, k_{2}, \ldots k_{n}, q\right)$=S^{(0)} \mathcal{M}_{n}\left(k_{1}, k_{2}, \ldots k_{n}\right)+S^{(1)} \mathcal{M}_{n}\left(k_{1}, k_{2}, \ldots k_{n}\right)+\mathcal{O}\left(q^{1}\right)$
- with $S^{(1)} \equiv-i \sum_{a=1}^{n} \frac{E_{\mu \nu} k_{a}^{\mu}\left(q_{\rho} J_{a}^{\rho \nu}\right)}{q \cdot k_{a}}$
- first discussed in [[White2011]] using eikonal methods
- proof [[2014#Cachazo, Strominger]]
- $\overline{SL(2,\mathbb{C})})$ ([[2020#Banerjee, Ghosh, Paul]])
- [[2019#Adamo, Mason, Sharma]]
- [[KapecLysovPasterskiStrominger2014]] and [[CampigliaLaddha2014]]
- explained in [[2020#Donnay, Pasterski, Puhm]]
- subsubleading soft graviton
- $\Delta=-1$
- $\mathcal{M}_{n+1}\left(k_{1}, k_{2}, \ldots k_{n}, q\right)=\left(S^{(0)}+S^{(1)}+S^{(2)}\right) \mathcal{M}_{n}\left(k_{1}, k_{2}, \ldots k_{n}\right)+\mathcal{O}\left(q^{2}\right)$ with $S^{(2)} \equiv-\frac{1}{2} \sum_{a=1}^{n} \frac{E_{\mu \nu}\left(q_{\rho} J_{a}^{\rho \mu}\right)\left(q_{\sigma} J_{a}^{\sigma \nu}\right)}{q \cdot k_{a}}$
- [[2019#Guevara]] also mentions $\Delta=1-\mathbb{Z}_+$
- [[2014#Cachazo, Strominger]]
- [[CampigliaLaddha2016]]
- [[CondeMao2016]]
- [[2018#Hamada, Shiu]]
- via Einstein equations: [[2021#Freidel, Pranzetti, Raclariu (Nov)]] and [[2021#Freidel, Pranzetti, Raclariu (Dec)]]
- identifies the [[0060 Asymptotic symmetry]] responsible for this
### Photons
- leading soft photon theorem <-> angle-dependent U(1) gauge transformation [[2014#He, Mitra, Porfyriadis, Strominger]]
- QED subleading soft photon theorem
- the soft theorem itself [[1958#Low]]
- [[2014#Lysov, Pasterski, Strominger]]
- current algebra [[2019#Himwich, Strominger]]
- other refs include [[CampigliaLaddha2016]] and [[CondeMao2016]]
- more subleading [[Sahoo2020]] [arXiv](https://arxiv.org/pdf/2008.04376.pdf)
- in general even dimensions
- [[KapecLysovStrominger2014]]
- relation of large gauge transformation and little group
- [[HamadaSeoShiu2017]]
- in the flat limit of AdS
- [[BanerjeeFernandesMitra2021]][](https://arxiv.org/pdf/2102.06165.pdf)
### Gluons
- [[0107 Soft gluon symmetry]]
- leading $\Delta=1$
- [[0069 Kac-Moody algebra|KM algebra]], or large gauge transformations
- turns out holomorphic
- see [[2015#He, Mitra, Strominger]]
- subleading $\Delta=0$
- proof [[2014#Casali]]
- does not correspond to a pure gauge (see [[2019#Adamo, Mason, Sharma]])
- negative $\Delta$
- generated by the two above (see [[2021#Guevara, Himwich, Pate, Strominger]])
### Other theories
- scalars in the sigma model
- [[2022#Kapec, Law, Narayanan]][](https://arxiv.org/abs/2205.10935)
- EFT containing photons
- [[2017#Laddha, Mitra]]
- with Goldstone bosons
- [[KampfNovotnyShifmanTrnka2019]][](https://arxiv.org/abs/1910.04766)
- [[0479 BFSS matrix model|BFSS]]
- [[2022#Miller, Strominger, Tropper, Wang]]
- scalar-YM
- [[2022#Melton, Narayanan, Strominger]]
- phonons
- [[2023#Cheung, Derda, Helset, Parra-Martinez]]
- dilaton
- [[Marotta2022]][](https://arxiv.org/pdf/2203.07957.pdf)
- scalars
- [[2022#Biswas, Semenoff]]
- scalar fields with broken Lorentz boosts
- [[2024#Du, Stefanyszyn]]
## Loop corrections
- Maxwell
- [[2019#Campiglia, Laddha]]
- [[0071 Yang-Mills|YM]]
- leading
- [[1998#Bern, Del Duca, Schmidt]]
- both IR-finite and infinite parts obtained
- [[2008#Dixon, Magnea, Sterman]]
- [[DixonGardiMagnea2009]][](https://arxiv.org/abs/0910.3653)
- reviewed in [[2014#Bern, Davies, Nohle]]
- subleading
- IR-finite [[2014#He, Huang, Wen]]
- gravity
- none at leading order: Weinberg
- subleading:
- IR finite
- [[2014#He, Huang, Wen]]
- no change at 1-loop
- IR infinite
- [[2014#Bern, Davies, Nohle]]
- only to 1-loop
- [[DonnayNguyenRuzziconi2022]][](https://arxiv.org/abs/2205.11477)
- subsubleading
- IR-divergent
- [[2014#Bern, Davies, Nohle]]
- only to 2-loop
- IR-finite
- [[BroedelDeLeeuwPlefkaRosso2014]]
- [[2014#He, Huang, Wen]]
- modified at 1-loop
- more refs
- IR-finite [[2014#He, Huang, Wen]]
- [[BernChalmers1995]][](https://arxiv.org/abs/hep-ph/9503236)
- celestial context
- [[2019#Campiglia, Laddha]]
- [[2017#He, Kapec, Raclariu, Strominger]]
- general study
- [[2023#Krishna, Sahoo]]
- [[0060 Asymptotic symmetry|asymptotic symmetries]] for log soft theorems
- [[2024#Choi, Laddha, Puhm (Mar)]]
- [[2024#Choi, Laddha, Puhm (Dec)]]
- soft currents
- [[2024#Bhardwaj, Srikant]]
## Higher derivative corrections
- $F^3$, $R^3$ and $R^2\phi$
- [[2014#Bianchi, He, Huang, Wen]]: with $F^3$ and $R^3$ interactions, the leading soft theorems are not modified because they are suppressed in the soft limit
- in bosonic string (graviton and dilaton)
- [[DiVecchiaMarottaMojaza2016]]
- general EFT with massless particles
- [[2016#Elvang, Jones, Naculich]]: subleading soft photon theorem and subsubleading soft graviton theorems are corrected by a finite number of higher-dimensional operators (which are nonminimally coupled to gravity)
- [[2021#Jiang (Aug)]]: reproduces [[2016#Elvang, Jones, Naculich]]'s results about soft theorem corrections by EFT operators; provides an argument that there are no EFT corrections to chiral symmetry algebra
- higher derivative corrections to soft photon theorem in EFT
- [[2017#Laddha, Mitra]]
- including negative helicity soft currents
- [[2021#Mago, Ren, Srikant, Volovich]]: finds constraints from Jacobi identity
## Susy
- D-dimensional N-extended supergravities
- [[2024#Kallosh]]
- general
- [[2024#Tropper]]
## Higher dimensions
- subleading soft graviton
- [[2014#Schwab, Volovich]]
- [[2014#Afkhami-Jeddi]]
- higher spin
- [[2020#Campoleoni, Francia, Heissenberg]]
- renormalisation issues
- [[Lionetti2022]][](https://arxiv.org/pdf/2209.10889.pdf): extra divergences in higher dimensions need to be renormalised
## Higher spin
- [[2022#Tran (Dec)]]
- [[2020#Campoleoni, Francia, Heissenberg]]
## Infinite tower
- [[2018#Hamada, Shiu]]
- [[LiLinZhang2018]]
- this leads to [[0328 w(1+infinity)]]
## Extensions/applications
- classical soft theorems
- [[0294 Classical soft graviton theorem]]
- SSB of Lorentz boosts (in inflationary geometry)
- [[GreenHuangShen2022]][](https://arxiv.org/pdf/2208.14544.pdf)
- [[0170 TTbar|TTbar]] deformation
- [[HeMaoMao2022]][](https://arxiv.org/abs/2209.01953)
- via helicity constraints
- [[RabearinoroRasoanaivoRaboanary2022]][](https://arxiv.org/abs/2212.00722)
- correction of soft graviton theorem for small cosmological constant
- [[BanerjeeBhattacharjeeMitra2020]] [](https://arxiv.org/pdf/2008.02828.pdf)
- multiple soft photons
- [[LiuMao2021]][](https://arxiv.org/pdf/2107.03240.pdf)
- light-cone gauge
- [[2022#Ananth, Pandey, Pant]]
- de Sitter
- [[2022#Bhatkar, Jain]]
- [[2023#Mao, Zhang]]
- relation to [[0152 Colour-kinematics duality|BCJ relations]]
- [[2023#Wei, Zhou]]
- finite temperature
- [[2023#Solanki, Bhattacharjee]]
- AdS
- [[2024#Chowdhury, Lipstein, Mei, Mo]]
- [[2025#Mei, Mo]]
- fermions in dS and AdS
- [[2024#Chowdhury, Chowdhury, Moga, Singh]]
- [[0419 Carrollian CFT|Carrollian]]
- [[2024#Bagchi, Dhivakar, Dutta]]
## Boundary results
- [[2023#Herderschee, Maldacena (Dec, b)]]: [[0479 BFSS matrix model|BFSS]]
## Two types of scaling
1. symmetric
- $k_{n}^{\alpha \dot{\alpha}} \rightarrow \delta k_{n}^{\alpha \dot{\alpha}}, \quad \lambda_{n}^{\alpha} \rightarrow \sqrt{\delta} \lambda_{n}^{\alpha}, \quad \tilde{\lambda}_{n}^{\dot{\alpha}} \rightarrow \sqrt{\delta} \tilde{\lambda}_{n}^{\dot{\alpha}}$
- then $M_{n}^{\text {tree }} \rightarrow\left(\frac{1}{\delta} S_{n}^{(0)}+S_{n}^{(1)}+\delta S_{n}^{(2)}\right) M_{n-1}^{\text {tree }}+\mathcal{O}\left(\delta^{2}\right)$
2. holomorphic
- $k_{n}^{\mu} \rightarrow \delta k_{n}^{\mu}, \quad \lambda_{n}^{\alpha} \rightarrow \delta \lambda_{n}^{\alpha}, \quad \tilde{\lambda}_{n}^{\dot{\alpha}} \rightarrow \tilde{\lambda}_{n}^{\dot{\alpha}}$
- then $M_{n}^{\text {tree }} \rightarrow\left(\frac{1}{\delta^{3}} S_{n}^{(0)}+\frac{1}{\delta^{2}} S_{n}^{(1)}+\frac{1}{\delta} S_{n}^{(2)}\right) M_{n-1}^{\text {tree }}+\mathcal{O}\left(\delta^{0}\right)$
- related by little group scaling
## Two prescriptions for momentum
1. impose momentum conservation for n and n-1
- [[2014#Cachazo, Strominger]]
2. use same momenta
- [[2014#Bern, Davies, Nohle]]
- shift contribution between different orders
\[*Acknowledgement: I thank Temple He for correspondence and Atul Sharma, Lecheng Ren, and Anders Schreiber for many discussions on this topic.*\]