# Covariant phase space
The covariant phase space formalism is a nice formalism for studying and deriving relations for theories with diffeomorphism invariance in a covariant way. They are particularly useful for formulating [[0127 Black hole thermodynamics|black hole thermodynamics]] in a theory-independent way; it can be used to obtain explicit expressions for the conserved charges such as the [[0004 Black hole entropy|black hole entropy]].
## Notations
- solution space $\mathcal{S}$
- a point in $\mathcal{S}$: $\phi$ or $\phi^x$ (a function of $x$)
- $\alpha\beta$: the exterior product of a $p$-form and a $q$-form ($\alpha\beta=(-1)^{pq}\beta\alpha$)
- $I_V$: anti-derivative (i.e. contraction with vector $V$)
- manifold $M$
- a map $Y: M\to M$
- pullback: $Y^*$
- diffeomorphism invariance: if a configuration of tensor fields $\phi$ satisfies EOM then
## Features
- Hamiltonian vector fields (HVF)
- $£_{\mathbf{X}_f} \mathbf\Omega=0$
- i.e. diffeo. that preserves the symplectic form
- 1-to-1 correspondence between HVFs and functions on phase space
- definition of HVF: $£_{\mathbf{X}_f} \mathbf\Omega=0$ => (using Cartan formula)
- $\mathrm{i}_{\mathbf{X}_f} \mathbf\Omega=\mathbf{d} f$ => $\mathbf{X}_{f}^{A}=\mathbf\Omega^{A B} \partial_{B} f$ (using invertability of symplectic form)
- $f$ is called the **charge**, which generates the transformation corresponding to $X_f$
## Poisson bracket
- if $X_f$ and $X_g$ are both HVF, immediately see $[X_f,X_g]$ is also a HVF. Since $X_f$ <-> $f$, and $X_g$ <-> g, we can ask what is one-to-one with $[X_f,X_g]$?
- define $\{f,g\}$ <-> $[X_f,X_g]$
- explicit formula: $\{f, g\}=\Omega^{A B} \partial_{A} f \partial_{B} g$
- $= -X_f(g)=X_g(f)=-\Omega(X_f,X_g)$
## Refs
- original
- [[1990#Lee, Wald]]
- [[1993#Wald]]: black hole entropy for stationary black holes
- [[1994#Iyer, Wald]]: black hole entropy for dynamical black holes
- extensions
- [[2006#Hollands, Marolf]]: [[0332 Supergravity|SUGRA]]
- [[2015#Prabhu]]: deals with internal gauge symmetry using the principle bundle
## Related topics
- [[0414 Second order formalism]]
- [[0360 Poisson bracket]]