# Virasoro algebra
Virasoro algebra is the unique central extension of the Witt algebra. The generators satisfy
$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}
$
where $c$ is the [[0033 Central charge|central charge]].
## The algebra of 2d CFT
In 2d CFT, the local [[0028 Conformal symmetry|conformal symmetry]] becomes two copies of the Virasoro algebra:
- $\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{n+m, 0}$
- $\left[L_{n}, \bar{L}_{m}\right]=0$
- $\left[\bar{L}_{n}, \bar{L}_{m}\right]=(n-m) \bar{L}_{n+m}+\frac{\bar{c}}{12} n\left(n^{2}-1\right) \delta_{n+m, 0}$
- usually $c = \bar{c}$
## The global subalgebra
Subalgebra involving $L_{\pm 1}$ and $L_0$ agree with those of the global transformation $l_\pm$ and $l_0$. See [[0028 Conformal symmetry|conformal symmetry]].
## Algebra from [[0030 Operator product expansion|OPE]]
\[*The following notes are taken from [[Rsc0006 Tong String theory]]*.\]
We need to compute:
$\left[L_{m}, L_{n}\right]=\left(\oint \frac{d z}{2 \pi i} \oint \frac{d w}{2 \pi i}-\oint \frac{d w}{2 \pi i} \oint \frac{d z}{2 \pi i}\right) z^{m+1} w^{n+1} T(z) T(w)$
![[0032_contours.png|400]]
The trick is to first fix $w$ and do the $z$ integral:
- the contour becomes
![[0032_trick.png|350]]
- using [[0030 Operator product expansion|OPE]], we have $\begin{aligned}\left[L_{m}, L_{n}\right] &=\oint \frac{d w}{2 \pi i} \oint_{w} \frac{d z}{2 \pi i} z^{m+1} w^{n+1} T(z) T(w) \\ &=\oint \frac{d w}{2 \pi i} \operatorname{Res}\left[z^{m+1} w^{n+1}\left(\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\ldots\right)\right] \end{aligned}$
- expand $z^{m+1}$ around $w$: $z^{m+1}=w^{m+1}+(m+1) w^{m}(z-w)+\frac{1}{2} m(m+1) w^{m-1}(z-w)^{2}+\frac{1}{6} m\left(m^{2}-1\right) w^{m-2}(z-w)^{3}+\ldots$
- then the residue theorem picks up products at order $1/(z-w)$, of which there are three, so $\left[L_{m}, L_{n}\right]=\oint \frac{d w}{2 \pi i} w^{n+1}\left[w^{m+1} \partial T(w)+2(m+1) w^{m} T(w)+\frac{c}{12} m\left(m^{2}-1\right) w^{m-2}\right]$
- doing the remaining integral gives $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0}$
## Related
- [[0030 Operator product expansion]]
- [[0114 Celestial OPE]]
- [[0073 AdS3-CFT2]]
- [[0085 Asymptotic symmetry of AdS3]]