# Jackiw-Teitelboim (JT) gravity
JT gravity is a solvable toy model of quantum gravity. Its (Euclidean) action is given by$I[g, \phi]=-\frac{1}{16 \pi G_N} \int_{\mathcal{M}} \sqrt{g}\, \phi(R+2)-\frac{1}{8 \pi G_N} \oint_{\partial \mathcal{M}} \sqrt{h}\, \phi(K-1),$where $\phi$ is a scalar field called the dilaton. To study higher topologies, it is useful to also introduce a topological term $-S_0\,\chi$ where $\chi$ is the Euler character, related to the genus of the surface $g$ and the number of boundaries $n$ by $\chi=2-2g-n$.
The dilaton field appears linearly in the action, so it plays the role of a Lagrange multiplier. In a path integral, this field can be integrated out (along some contour) so that the resulting path integral is a gravitational path integral with the constraint on the metric that $R=-2$ everywhere. This greatly simplifies the problem of doing the [[0555 Gravitational path integral|gravitational path integral]]. With this simplification, the only degrees of freedom for a fixed topology lie on the boundary/boundaries.
It is remarkable that JT gravity is [[0471 String-matrix duality|dual]] to an [[0154 Ensemble averaging|ensemble]] of [[0197 Matrix model|random matrix models]].
## Path integral
The path integral for JT is done in a few steps. Consider the case with one boundary first, i.e., $\langle Z(\beta)\rangle$. Now proceed as follows: (1) cut the geometry along some geodesic circle with length $b$, which can be done for any genus $g\ge1$; (2) path integrate the Schwarzian modes for the component with the boundary and integrate over the moduli of the Riemann surface with $b$ fixed; (3) integrate over the length of the geodesic circle $b$.
With one boundary, the partition function is computed to be$\langle Z(\beta)\rangle \simeq e^{S_0} Z_{\text {Sch}}^{\text {disk }}(\beta)+\sum_{g=1}^{\infty} e^{(1-2 g) S_0} \int_0^{\infty} b \,d b\, V_{g, 1}(b) Z_{\mathrm{Sch}}^{\text {trumpet }}(\beta, b),$where $V_{g,n}(b)$ is the [[0617 Weil-Petersson volume|Weil-Petersson volume]].
Higher-point correlation functions are computed using pair-of-pants decomposition.
## Refs
- original
- [[1985#Jackiw]]
- [[1983#Teitelboim]]
- modern studies
- [[2014#Almheiri, Polchinski]]
- [[2016#Maldacena, Stanford, Yang]]
- Schwarzian description
- [[2016#Jensen]]
- [[2016#Maldacena, Stanford, Yang]]
- [[2016#Engelsoy, Mertens, Verlinde]]
- reviews
- [[2022#Mertens, Turiaci (Review)]]
- boundary particle formulation
- [[2018#Kitaev, Suh]]
- [[2018#Yang]]
- [[2019#Suh]]
## Quantisation
- canonical quantisation
- without matter: quantum particle in an exponential well [[2018#Harlow, Jafferis]]
- with non-trivial matter CFT: solved by Weyl transformation to flat space
- Euclidean path integral
- get an average over quantum systems
- alternative boundary conditions
- [[Henneaux1985]]
- [[Navarro-SalasNavarroAldaya1992]]
- [[ConstantinidisPiguetPerez2008]]
- bulk Hilbert space
- [[2024#Iliesiu, Levine, Lin, Maxfield, Mezei]]
## Generalisations
- end-of-the-world branes
- [[2019#Blommaert, Mertens, Verschelde]]: eigenbranes (FZZT boundaries)
- [[2020#Goel, Iliesiu, Kruthoff, Yang]]: energy branes, $\alpha$-branes etc
- [[2021#Gao, Jafferis, Kolchmeyer]]: dynamical branes as EFT
- JT supergravity
- [[JohnsonRossoSvesko2021]]@[](https://arxiv.org/pdf/2102.02227.pdf)
- [[2021#Rosso, Turiaci]]
- [[2023#Turiaci, Witten]]
- with dynamic EOW branes
- [[2019#Blommaert, Mertens, Verschelde]]: FZZT-type branes called eigenbranes
- [[2021#Gao, Jafferis, Kolchmeyer]]: EOW brane as effective model of a modified version of SSS
- [[2023#Belaey, Mariani, Mertens]]: branes in JT supergravity
- with higher derivative corrections (in 4d then reduced to 2d)
- [[2021#Banerjee, Mandal, Rudra, Saha]]
- adding quadratic curvature to the action (and performing the Gaussian integral)
- [[BelokurovShavgulidze2022]][](https://arxiv.org/pdf/2206.05172.pdf)
- JT with conical defects
- [[2019#Mertens, Turiaci]]
- [[2020#Maxfield, Turiaci]]: dimensional reduction from 3D Seifert manifolds and sharp defects
- [[MeffordSuzuki2020]]@[pdf](https://arxiv.org/pdf/2011.04695.pdf)
- [[2020#Witten (June, b)]]: sharp defects and corresponding deformations in the matrix potential
- [[2020#Turiaci, Usatyuk, Weng]]: defects with general defect angle $\in(0,2\pi)$
- [[2023#Eberhardt, Turiaci]]: [[0617 Weil-Petersson volume|Weil-Petersson]] measure and recursion
- [[2023#Lin, Usatyuk]]
- JT with fermions
- [[BanksDraperZhang2022]][](https://arxiv.org/abs/2205.07382)
- JT with gauge field
- [[2019#Kapec, Mahajan, Stanford]]
- [[2019#Iliesiu]]
- JT with higher spin and SUSY
- [[2023#Griguolo, Guerrini, Panerai, Papalini, Seminara]]
- include higher topologies
- see [[2019#Saad, Shenker, Stanford]]
- non-perturbative
- [[JohnsonRosso2020]]
- [[2023#Eynard, Garcia-Failde, Gregori, Lewanski, Schippa]]
- [[2023#Johnson]]
- very high genus
- [[Kimura2021]][](https://arxiv.org/pdf/2106.11856.pdf):
- cut-off JT and Liouville CFT${}_1$
- [[2024#Ferrari]]
- JT with matter
- [[2022#Jafferis, Kolchmeyer, Mukhametzhanov, Sonner (Short)]]
- [[2022#Jafferis, Kolchmeyer, Mukhametzhanov, Sonner (Long)]]
- JT with matter on conical defect geometries
- [[2021#Iliesiu, Mezei, Sarosi]]
- [[2023#Boruch, Iliesiu, Yan]]
- [[2023#Lin, Usatyuk]]
- [[0545 de Sitter quantum gravity|dS]] JT
- canonical quantisation
- [[2024#Alonso-Monsalve, Harlow, Jefferson]]
- [[2024#Held, Maxfield]]
- [[2025#Dey, Nanda, Roy, Sake, Trivedi]]
- misc papers
- classifying BC: [[GoelIliesiuKruthoffYang2020]] [pdf](https://arxiv.org/pdf/2010.12592.pdf)
- dS JT and [[0167 Butterfly velocity|butterfly velocity]] [pdf](https://arxiv.org/pdf/2010.14539.pdf)
- more general 2d dilaton gravity [Narayan](https://arxiv.org/pdf/2010.12955.pdf)
- limits of JT [](https://arxiv.org/pdf/2011.13870.pdf)
- a non-ensemble version by including a set of branes: [[2020#Blommaert]]
- microstates: [[Johnson2022]][](https://arxiv.org/pdf/2201.11942.pdf)
## Calculations and properties
- low-temperature entropy
- [[JanssenMirbabayi2021]][](https://arxiv.org/abs/2103.03896)
- JT with matter correlators
- [[2017#Mertens, Turiaci, Verlinde]]: disk
- [[2018#Yang]]
- [[2019#Saad]]: genus-1, 2-point, 1-boundary (eq.4.21)
- [[2020#Blommaert]]
- [[2021#Iliesiu, Mezei, Sarosi]]: (eq.3.9)
- [[2022#Jafferis, Kolchmeyer, Mukhametzhanov, Sonner (Long)]]: disk, trumpet, three boundary
- [[2024#Iliesiu, Levine, Lin, Maxfield, Mezei]]
## Related
- [[0471 String-matrix duality]]