# Spectral form factor
The spectral form factor (SFF) is an important quantity that can be used to diagnose [[0008 Quantum chaos|quantum chaos]]. In terms of the analytically continued thermal partition function,$Z(\beta+i t)=\sum_{n} e^{-(\beta+i t) E_{n}},$it can be defined as$g(\beta, t)=\left|\frac{Z(\beta+it)}{Z(\beta)}\right|^2\\
=\frac{1}{Z(\beta)^2}\sum_{m, n} e^{-\beta\left(E_m+E_n\right)} e^{i\left(E_m-E_n\right) t}.$
It characterises two-point correlations $\langle\rho(E)\rho(E')\rangle$ of the eigenvalue spectrum.
The ramp captures the long-range level repulsion of eigenvalues whereas the plateau arises from the discreteness of the spectrum (short-range).
<!--
- variant: $Y_{E, \Delta}(t)=\sum_{n} e^{-\frac{\left(E_{n}-E\right)^{2}}{2 \Delta^{2}}} e^{-i E_{n} t}$
-->
## Refs
- [[2022#Blommaert, Kruthoff, Yao]] integrable structure
- relation to thermal effects at late time
- [[2023#Winer, Swingle]]
- relation to [[0052 Pseudo-entropy|pseudo-entropy]]
- [[2024#He, Lau, Zhao]]
- in scattering:
- [[2024#Bianchi, Firrotta, Sonnenschein, Weissman]]
- sonic systems
- [[WinerSwingle2022]][](https://arxiv.org/pdf/2211.09134.pdf)
- from replica trick
- [[2024#Cao, Faulkner]]
## Dominant contributions
- $Z(\beta+it)$: for large $t$, due to phase cancellations from high energy states, the temperature effectively lowers (why) and at some $t\sim O(\beta)$ the quantity will be dominated by thermal AdS rather than BH
- $Y_{E,\Delta}(t)$: thermal AdS will not contribute for high enough energy, so can study BH at a longer time scale
## Annealed v.s. quenched
- annealed easier and more correct
- annealed: $\frac{\left\langle|Z(\beta, t)|^{2}\right\rangle}{\left\langle Z(\beta)^{2}\right\rangle}$
- quenched: $\left\langle\frac{|Z(\beta,t)|^{2}}{Z(\beta)^{2}}\right\rangle$
## Related
- [[0308 Half-wormhole]]
- [[0154 Ensemble averaging]]