# The BMS group
In addition to the Poincare group, the BMS group consists of supertranslation. More precisely, the BMS group is the semi-product of Lorentz group with supertranslations (STs).
There are several ways in which the BMS group has been generalised:
- *generalised* BMS: Diff$(S^2)\ltimes$ST
- *extended* BMS: (Witt$\oplus$Witt)$\ltimes$ST
- Weyl BMS: Diff$(S^2)\ltimes$Weyl$\ltimes$ST
## Refs
- original BMS:
- [[1962#Bondi, van der Burg, Metzner]]
- [[1962#Sachs]]
- algebra etc in [[2020#Banerjee, Ghosh, Gonzo]]
- importance in flat holography: [[2019#Fotopoulos, Stieberger, Taylor, Zhu]]
- BMS for all five infinities: [[2023#Compere, Gralla, Wei]]
- non-linear Weyl BMS: [[2023#Flanagan, Nichols]]
## Unextended BMS
- semi-product of the $SL(2,\mathbb{C})$ subgroup of global conformal transformations of the [[0022 Celestial sphere|celestial sphere]] (isomorphic to the Lorentz group) and the Abelian subgroup of supertranslations
## Transformations (infinitesimal)
- superrotation
- holomorphic, ==$L_n$==
- $z \rightarrow z+\epsilon z^{n+1}, \quad \bar{z} \rightarrow \bar{z}, \quad u \rightarrow u+\frac{1}{2} \epsilon z^{n+1}, \quad n \in \mathbb{Z}$
- antiholomorphic, ==$\bar{L}_n$==
- $z \rightarrow z, \quad \bar{z} \rightarrow \bar{z}+\bar{\epsilon} \bar{z}^{n+1}, \quad u \rightarrow u+\frac{1}{2} \bar{\epsilon} \bar{z}^{n+1}, \quad n \in \mathbb{Z}$
- supertranslation, ==$P_{a,b}$==
- $z \rightarrow z, \quad \bar{z} \rightarrow \bar{z}, \quad u \rightarrow u+\epsilon z^{a+1} \bar{z}^{b+1}, \quad a, b \in \mathbb{Z}$
- global part $a,b=-1,0$
## Algebra
- $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}$
- = centre-less Virasoro
- $\left[\bar{L}_{m}, \bar{L}_{n}\right]=(m-n) \bar{L}_{m+n}$
- = another copy of centre-less Virasoro
- $\left[P_{a, b}, P_{a^{\prime}, b^{\prime}}\right]=0$
- $\left[L_{n}, P_{a, b}\right]=\left(\frac{n-1}{2}-a\right) P_{a+n, b}$
- $\left[\bar{L}_{n}, P_{a, b}\right]=\left(\frac{n-1}{2}-b\right) P_{a, b+n}$
## Non-factorisation ([[2020#Banerjee, Ghosh, Gonzo]])
- BMS group is not a direct product of holomorphic and anti-holo. transformation
- <- because supertranslations have weights of both
- => different from usual CFT
## Transformation of fields
- holomorphic superrotation
- $\delta \phi_{h, \bar{h}}(u, z, \bar{z})=\epsilon\left[z^{n+1} \partial+(n+1)\left(h+\frac{1}{2} u \partial_{u}\right) z^{n}\right] \phi_{h, \bar{h}}(u, z, \bar{z})$
- antiholom. superrot.
- $\delta \phi_{h, \bar{h}}(u, z, \bar{z})=\epsilon\left[\bar{z}^{n+1} \bar{\partial}+(n+1)\left(\bar{h}+\frac{1}{2} u \partial_{u}\right) \bar{z}^{n}\right] \phi_{h, \bar{h}}(u, z, \bar{z})$
- supertranslation
- $\delta \phi_{h, \bar{h}}(u, z, \bar{z})=\epsilon z^{a+1} \bar{z}^{b+1} \partial_{u} \phi_{h, \bar{h}}(u, z, \bar{z})$
## Extensions
- [[Prabhu202112]][](https://arxiv.org/pdf/2112.07186.pdf)
- understanding from [[0103 Two-point functions|Green's function]]: [[BatlleCampelloGomis2022]][](https://arxiv.org/pdf/2207.12299.pdf)
- on effective action of superrotation modes [[NguyenSalzer2020]] [arXiv](https://arxiv.org/pdf/2008.03321.pdf)
- quantum [[2020#Donnay, Giribet, Rosso]]
## History
- see [[0063 Symmetry of CCFT]]
![[0064_sum.png]]
## Novel descriptions
- Wald-Zoupas prescription [[GrantPrabhuShehzad2021]][](https://arxiv.org/pdf/2105.05919.pdf)
- [[0330 Twistor theory|twistorial]] description: [[Prabhu202111]][](https://arxiv.org/pdf/2111.00478.pdf)