# Soft gluon symmetry/theorem
The soft gluon theorem is an example of [[0009 Soft theorems|soft theorems]].
## Leading soft gluon theorem
- (at tree level)
- in momentum basis $\left\langle\mathcal{O}_{1}\left(p_{1}\right) \cdots \mathcal{O}_{n}\left(p_{n}\right) \mathcal{O}^{a}(q, \varepsilon)\right\rangle_{U=1}=g_{Y M} \sum_{k=1}^{n} \frac{p_{k} \cdot \varepsilon}{p_{k} \cdot q}\left\langle\mathcal{O}_{1}\left(p_{1}\right) \cdots T_{k}^{a} \mathcal{O}_{k}\left(p_{k}\right) \cdots \mathcal{O}_{n}\left(p_{n}\right)\right\rangle_{U=1}+\mathcal{O}\left(q^{0}\right)$
- in conformal basis $\left\langle J_{z}^{a} \mathcal{O}_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots \mathcal{O}_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle_{U=1}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}\left\langle\mathcal{O}_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots T_{k}^{a} \mathcal{O}_{k}\left(z_{k}, \bar{z}_{k}\right) \cdots \mathcal{O}_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle_{U=1}$
- this is just the [[0106 Ward identity]] of [[0069 Kac-Moody algebra]]
- the soft pole in the momentum basis expression is absent in the conformal basis expression simply because the definition of $J^a_z$ involves the zero mode of the field strength rather than the gauge field and hence an extra factor of the soft energy
- see [[2013#Strominger (Dec)]]
## Applicability
- not confined
- not Higgsed
- otherwise no soft gluons
## $U(1)$ case
- [[2019#Himwich, Strominger]]
- current algebra
## Subleading soft gluon symmetry
- [[2020#Banerjee, Ghosh]]
- see [[0101 Gluon celestial toolkit]] for action on gluons
## Loop
- unlike soft photon, the soft gluon theorem has corrections at loop level
## Refs
- recent ref [[2021#Guevara, Himwich, Pate, Strominger]]