# Dual of shockwaves
As reviewed and studied in [[2017#Afkhami-Jeddi, Hartman, Kundu, Tajdini]], there are three ways of creating [[0117 Shockwave|shockwaves]] from the CFT perspective.
1. insert momentum-space operator smeared against a wavepacket profile
2. insert a heavy local operator $\phi$ with $\Delta_\phi\gg 1$ at a single point
3. complexified wavepacket
These states differ microscopically but appear the same for probes avoiding the delta function at the shockwave source.
## Refs
- method 1 (inserting momentum-space operator smeared against a wavepacket profile)
- [[2006#Cornalba, Costa, Penedones, Schiappa (a)]]
- [[2006#Cornalba, Costa, Penedones, Schiappa (b)]]
- [[2007#Cornalba, Costa, Penedones]]
- method 2 (insert a heavy local operator $\phi$ with $\Delta_\phi\gg 1$ at a single point)
- [[2013#Nozaki, Numasawa, Takayagani]]
- [[2014#Asplund, Bernamonti, Galli, Hartman]]
- [[2015#Hartman, Jain, Kundu]]
- [[2014#Roberts, Stanford, Susskind]]
- method 3 (complexified wavepacket)
- [[2016#Afkhami-Jeddi, Hartman, Kundu, Tajdini]]
- shockwave and [[0030 Operator product expansion|OPE]]
- [[2017#Afkhami-Jeddi, Hartman, Kundu, Tajdini]]
- causality
- [[2016#Hartman, Kundu, Tajdini]]: ANEC from causality
- [[2017#Afkhami-Jeddi, Hartman, Kundu, Tajdini]]
- locality
- [[2017#Chen, Fitzpatrick, Kaplan, Li]]
- related
- [[2015#Hartman, Jain, Kundu]] shock waves but *in CFT*
## Method 2: local heavy operators
- insert a scalar primary operator $\psi$ near $\mathrm{i}\infty$
- e.g. a real Lorentzian shock wave metric is dual to $|\Psi\rangle=\psi\left(u=\frac{\mathrm{i} \Delta_{\psi}}{2 E}, v=\frac{2 \mathrm{i} z_{0}^{2} E}{\Delta_{\psi}}\right)|0\rangle$
- require $1\ll\Delta_\psi\ll E$
## Correlator
- $G_{\text {Eik }}(z, \bar{z})=\frac{\Gamma(2 \Delta)}{\Gamma^{2}(\Delta-1)} \int_{H_{3}} \frac{d^{3} \mathbf{x}}{(-2 \mathbf{q} \cdot \mathbf{x}+h(\mathbf{x} \cdot \mathbf{p})+i \epsilon)^{2 \Delta}}$
- leading eikonal [[2006#Cornalba, Costa, Penedones, Schiappa (a)]]
- all order eikonal [[2019#Fitzpatrick, Huang, Li]] eqn.31 and later as an expansion
- QFT on shockwave background? [[Klimcik1988]]