# N=4 SYM
N.b. we are working in 4d.
## Action
- schematically
- $\mathcal{L}=\frac{1}{g^{2}} \operatorname{Tr}\left[-F_{\mu \nu} F^{\mu \nu}-D_{\mu} \phi_{I} D^{\mu} \phi_{I}+\bar{\lambda}^{i} \not D \lambda_{i}+\sum_{I, J}\left[\phi_{I}, \phi_{J}\right]^{2}+\bar{\lambda}^{i} \Gamma^{I} \phi_{I} \lambda_{i}+\theta \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}\right]$
- schematically in $\mathcal{N}=1$ notation
- $\mathcal{L}=\int d^{4} \theta \sum_{i} \bar{\Phi}_{i} e^{V} \Phi_{i}+\int d^{2} \theta \operatorname{Tr}\left[\tau \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}+\Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]\right]+\mathrm{h.c.}$
- where $\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}}$ is a complex gauge coupling
## Fields
- $V_{\mathcal{N}=4}=\left(A_{\mu}, \lambda_{i=1, \ldots, 4}, \phi_{I=1, \ldots, 6}\right)$
- gauge fields
- 4 fermions = fundamental of $SU(4)$ = Weyl spinor of $SO(6)$
- 6 scalar fields = fundamental of $SO(6)$ = antisymmetric of $SU(4)$
- in terms of $\mathcal{N}=1$ notation: $V_{\mathcal{N}=4}=V_{\mathcal{N}=1}$ plus three chiral $\Phi_{1,2,3}$ in the adjoint
## Remarks
- the Lagrangian completely determined by SUSY
- $\mathcal{N}=4$ is the maximum one can have in 4d flat space
## Symmetry
- conformal SO(4,2) <-> isometry of AdS${}_5$
- global SO(6) (internal symmetry of 6 scalar fields) <-> isometry of $S^5$
- $SU(4)\cong SO(6)$, $SU(4)$ is the **R-symmetry**
- SUSY 4 + 4 (conformal sym does not commute with the 4 SUSY generators so extra 4) Weyl spinors (two complex components) so 32 real charges <-> same number of large *local* SUSY in this string theory
## More symmetries
- $\beta$ function for $g$ is 0 for all loop orders and non-perturbatively -> SCFT with superconformal group ==$SU(2,2|4)$==
- **S-duality**:
- EM duality: $\tau\rightarrow -\frac{1}{\tau}$
- shift of $\theta$ angle: $\tau\rightarrow\tau+1$
- => overall S-duality = $SL(2,\mathbb{Z})$