# Sachdev-Ye-Kitaev model
The SYK model is a 0+1 dimensional field theory, which is, in other words, a quantum mechanical model. It consists of $N$ Majorana fermions, which in 0+1 dimensions just means matrices $\psi_i$ satisfying $\left\{\psi_i, \psi_j\right\}=\delta_{ij}, \quad i, j=1, \ldots, N.$These matrices are $2^{N/2}$ by $2^{N/2}$: $N/2$ qubits needed to build $N$ Majorana fermions. The SYK Hamiltonian is given by$H_{4}=J_{ijkl}\, \psi_i \psi_j \psi_k \psi_l,$where $J_{ijkl}$ are random couplings with an expectation value $\left\langle J_{ijkl}^2\right\rangle=\frac{\mathcal{J}^2}{N^3}$. More generally, it can have $p$ fermions interacting:$H_p=i^{p / 2} \sum_{1 \leq i_1<\cdots<i_p \leq N} J_{i_1 i_2 \cdots i_p} \psi_{i_1} \cdots \psi_{i_p}.$
## Refs
- original
- [[1992#Sachdev, Ye]]
- Kitaev's talks at KITP (April 7, 2015 and May 27, 2015)
- Schwinger-Dyson equation and spectrum
- [[2016#Polchinski, Rosenhaus]]
- Schwarzian description
- [[2016#Maldacena, Stanford]]
- [[2017#Kitaev, Suh]]
- non-linear soft mode action
- [[2024#Berkooz, Frumkin, Mamroud, Seitz]]
- [[2024#Bucca, Mezei]]
- general reviews
- [Wiki](https://en.wikipedia.org/wiki/Sachdev%E2%80%93Ye%E2%80%93Kitaev_model)
- talk by Juan [](https://youtu.be/PMhSQo6Tfz0)
- Stanford's talk at strings 2017 [](https://youtu.be/m-jwdkIf1gc)
- light review [[Sachdev2022Review]][](https://arxiv.org/pdf/2205.02285.pdf)
- [[2023#Sachdev (Review)]]: short review, focus on thermodynamics
- properties
- relation to [[0579 Random matrix theory|random matrix theory]]
- [[2016#Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka]]
- [[2018#Gharibyan, Hanada, Shenker, Tezuka]]
- extensions
- lattices of SYK
- [[2016#Gu, Qi, Stanford]]
- [[2017#Song, Jian, Balents]]
- [[2017#Jian, Yao]]
- SUSY
- [[2016#Fu, Gaiotto, Maldacena, Sachdev]]
- higher dimensions
- [[2016#Turiaci, Verlinde]]
- [[2022#Pasterski, Verlinde (Jan, b)]]
- dual of SYK
- [[0050 JT gravity]]
- as a string theory: [[GoelVerlinde2021]][](https://arxiv.org/abs/2103.03187)
- EFT and RG: [[2024#Choun, Kim, Kim]]
## $G$-$\Sigma$ action
- introduce bi-local fields $G$ and $\Sigma$ as auxiliary fields
- partition function can be written as $Z=\int D G\left(t, t^{\prime}\right) D \Sigma\left(t, t^{\prime}\right) e^{-N I[\Sigma, G]}$
## Special limits
- large $N$ but finite $p$
- Feynman diagrams are dominated by melonic diagrams
- large $N$ and $p$
- see [[0503 Double-scaled SYK]].
## Two-point function
- real-time two-point function decays
- it is a manifestation of [[0008 Quantum chaos|chaos]] in this model
## Chaos
- chaos can be seen by looking at $\left\langle\left\{\psi_a(0), \psi_b(t)\right\}^2\right\rangle$
- SYK saturates the [[0474 Chaos bound|chaos bound]], but see [[2023#Lin, Stanford]] for sub-maximal chaos
- an integrable model with chaos-like OTOC: [[2024#Ozaki, Katsura]]
## Related topics
- [[0655 JT-Schwarzian correspondence]]