# Gravity from entanglement
The idea that gravity is emergent is an important feature of [[0001 AdS-CFT|holography]]. This is manifested in various ways. [[0026 Bulk reconstruction|Bulk reconstruction]] is the idea of obtaining bulk data (including the metric) from boundary data. However, to go one step further, one would like to obtain also the bulk *theory* from boundary data.
On this page, we focus on the special case of obtaining the classical bulk equations of motion from [[0301 Entanglement entropy|entanglement entropy]] data on the boundary.
## Refs
- [[1995#Jacobson]]: early work for Rindler horizons
- [[BlancoCasiniHungMyers2013]][](https://arxiv.org/abs/1305.3182)
- [[LashkariMcDermottVanRaamsdonk2013]][](https://arxiv.org/abs/1308.3716)
- Einstein gravity
- [[2013#Faulkner, Guica, Hartman, Myers, van Raamsdonk]]
- higher derivative
- [[2017#Faulkner, Haehl, Hijano, Parrikar, Rabideau, van Raamsdonk]]
- non-linear gravity
- [[2017#Haehl, Hijano, Parrikar, Rabideau]]
- higher derivative non-linear
- [[2018#Lewkowycz, Parrikar]]
- arbitrary region
- double deformation
- [[2023#Parrikar, Singh]]
- an example when bulk quantum corrections are important
- [[2024#Jiang, Wang, Wu, Yang (Oct)]]
- AdS3 Einstein gravity from CFT2 entanglement
- [[2025#Kumar]]
- non-linear higher-derivative gravity
## Alternative approaches
- EOM from entanglement equilibrium of local diamonds
- [[2022#Alonso-Serrano, Liska]]
- [[0045 Einstein equation from thermodynamics]]
![[A0012 Gravitating fibres.png]]
\[*Spacetime arising from fibre-like structures which represent entanglements.*\]