# Gravity from entanglement The idea that gravity is emergent is an important feature of [[0001 AdS-CFT|holography]]. This is manifested in various ways. [[0026 Bulk reconstruction|Bulk reconstruction]] is the idea of obtaining bulk data (including the metric) from boundary data. However, to go one step further, one would like to obtain also the bulk *theory* from boundary data. On this page, we focus on the special case of obtaining the classical bulk equations of motion from [[0301 Entanglement entropy|entanglement entropy]] data on the boundary. ## Refs - [[1995#Jacobson]]: early work for Rindler horizons - [[BlancoCasiniHungMyers2013]][](https://arxiv.org/abs/1305.3182) - [[LashkariMcDermottVanRaamsdonk2013]][](https://arxiv.org/abs/1308.3716) - Einstein gravity - [[2013#Faulkner, Guica, Hartman, Myers, van Raamsdonk]] - higher derivative - [[2017#Faulkner, Haehl, Hijano, Parrikar, Rabideau, van Raamsdonk]] - non-linear gravity - [[2017#Haehl, Hijano, Parrikar, Rabideau]] - higher derivative non-linear - [[2018#Lewkowycz, Parrikar]] - arbitrary region - double deformation - [[2023#Parrikar, Singh]] - an example when bulk quantum corrections are important - [[2024#Jiang, Wang, Wu, Yang (Oct)]] - AdS3 Einstein gravity from CFT2 entanglement - [[2025#Kumar]] - non-linear higher-derivative gravity ## Alternative approaches - EOM from entanglement equilibrium of local diamonds - [[2022#Alonso-Serrano, Liska]] - [[0045 Einstein equation from thermodynamics]] ![[A0012 Gravitating fibres.png]] \[*Spacetime arising from fibre-like structures which represent entanglements.*\]