# Cachazo-Svrcek-Witten (CSW) relations (or MHV rules)
The CSW relations allow one to construct all colour-ordered amplitudes in YM from [[0061 Maximally helicity violating amplitudes|MHV]] vertices.
## Refs
- introduction in [[Rsc0003 ElvangHuang Scattering amplitudes]]
- originals
- [[Witten200312]]: uses the fact that all tree-level color-ordered amplitudes are related to algebraic curves in [[0330 Twistor theory|twistor space]]
- [[CachazoSvrcekWitten2004]]
- proof
- [[Risager2005]][](https://arxiv.org/pdf/hep-th/0508206.pdf)
- [[ElvangFreedmanKiermaier2008]] and more
- colour-dressed version
- [[2006#Duhr, Hoche, Maltoni]]
## Steps
- shift
- $| \hat{i}]=|i]+z c_{i} | X]$ for some arbitrary reference spinor $|X]$
- holomorphic: angular unshifted
- further choice:
- *Risager* shift: only $c_1$ to $c_3$ non-zero
- *all-line* shift: all $c_i\ne0$
- simplification
- N${}^K$MHV fall off as $1/z^K$ for large $z$ under all-line shift
- so except MHV ($K=0$), all NMHV can be recursed
- i.e. $MHV$ are building blocks
- general result
- any N${}^K$MHV tree amplitude can be written as precisely $K+1$ MHV amplitudes
## NMHV ($K=1$)
- possible sub-amplitudes are anti-MHV${}_3\times$ NMHV and MHV $\times$ MHV
- first one vanish
- so just MHV