# Raychaudhuri equation (and focusing theorem)
The Raychaudhuri equation is derived from Einstein's equation. It is a useful equation in establishing proofs in General Relativity. For example, it is used in the derivation of [[0225 Singularity theorems|singularity theorems]].
For an affine parameter $\lambda$: $\frac{d \theta}{d \lambda}=-\frac{\theta^{2}}{D-2}-\sigma_{a b} \sigma^{a b}-R_{a b} k^{a} k^{b}.$
For a non-affine parameter $v$: $\frac{d \hat{\theta}}{d v}=\kappa \hat{\theta}-\frac{\hat{\theta}^{2}}{D-2}-\hat{\sigma}_{ab} \hat{\sigma}^{ab}-R_{ab} \chi^{a} \chi^{b}.$
## Refs
- see e.g. [[2007#Amsel, Marolf, Virmani]] Appendix A for a derivation.
- general null surfaces:
- [[2023#Ciambelli, Freidel, Leigh]]
- review
- [[2024#Chakraborty, Chakraborty (Review)]]
- discrete notion of nonexpansion
- [[2024#Bousso, Tabor]]
- higher-spin
- [[2024#Yan]]
## In modified gravity
- it will change with [[0006 Higher-derivative gravity|HDG]]
- [[ChoudhuryDasguptaBanerjee2021]][](https://arxiv.org/abs/2103.08869): [[0140 Scalar-tensor theory]]