# Holographic shear viscosity and the KSS bound
Einstein gravity predicts a relation between shear viscosity and entropy density for the boundary [[0429 Hydrodynamics|hydrodynamics]]:
$
\eta=\frac{\hbar}{4 \pi k_{B}} s.
$
The shear viscosity is set by the $k,\omega\to 0$ limit of the [[0473 Retarded Green's function|retarded Green's function]] of the stress tensor:$\eta=-\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im} \tilde{G}_R^{x y, x y}(\omega, k=0).$In this limit, the radial evolution of the bulk perturbation is very simple and depends only on the near-horizon region of the gravitational solution.
The Kovtun-Son-Starinets (KSS) bound states that this is a lower bound!
## Definition
The one-point function due to a source $\phi_0$ is given by the thermal retarded correlator of $\mathcal{O}$:$\langle\mathcal{O}(\omega, \vec{k})\rangle_{\mathrm{QFT}}=-G^{R}(\omega, \vec{k}) \phi_{0}(\omega, \vec{k}).$
The low-frequency limit of this defines a transport coefficient:$\chi=-\lim _{\omega \rightarrow 0} \lim _{\vec{k} \rightarrow 0} \frac{1}{\omega} \operatorname{Im} G^{R}(\omega, \vec{k}) .$This means the low frequency limit response is just:$\langle\mathcal{O}\rangle_{\mathrm{QFT}}=-\chi \partial_{t} \phi_{0}(t).$
Some examples:
- [[0430 Holographic shear viscosity|shear viscosity]], $\eta$: $\mathcal{O}=T_{xy}$, off-diagonal elements of the stress tensor;
- DC conductivity, $\sigma$: take $\mathcal{O}=J_z$, a component of the electric current.
## Refs
- pre-cursors
- [[2001#Policastro, Son, Starinets]] ($\mathcal{N}=4$ SYM) and [[2002#Policastro, Son, Starinets]]
- original
- [[2004#Kovtun, Son, Starinets]]: also conjectures that this is a lower bound (KSS bound)
- proofs
- [[2008#Iqbal, Liu]]: proof using near-horizon analysis
- [[Hod2009Essay]]: derivation using [[0445 Hod's universal relaxation bound|Hod's universal relaxation bound]]
- explicit calculations
- [[GubserPufuRocha2008]][](https://arxiv.org/abs/0806.0407)
- [[BenincasaBuchelStarinets2005]][](https://arxiv.org/abs/hep-th/0507026)
- relation to causality violation
- [[2008#Brigante, Liu, Myers, Shenker, Yaida]]
- breaking rotation invariance
- [[2023#Baggioli, Cremonini, Early, Li, Sun]]
- far-from-equilibrium extension
- [[2020#Wondrak, Kaminski, Bleicher]]
- [[2024#Wang, He, Li]]
## Theory dependence
Higher derivative corrections do change the ratio $1/4\pi$.
- review: [[2011#Cremonini (Review)]]
- [[BuchelLiu2003]]: SUGRA
- [[2004#Buchel, Liu, Starinets]]
- [[BenincasaBuchel2005]][](https://arxiv.org/abs/hep-th/0510041)
- [[0425 Gauss-Bonnet gravity|Gauss-Bonnet]]:
- [[2007#Brigante, Liu, Myers, Shenker, Yaida]]
- [[2016#Grozdanov, Kaplis, Starinets]]
- curvature squared [[KatsPetrov2007]][](https://arxiv.org/abs/0712.0743)
- [[2008#Brigante, Liu, Myers, Shenker, Yaida]]
- tuning $\eta/s$ below (16/25)(1/4$\pi$) induces microcausality violation in the CFT, rendering the theory inconsistent!
- general framework for higher-derivative corrections
- [[2023#Buchel, Cremonini, Early]]
- [[2024#Buchel]]
- constrain theory from boundary data
- [[2024#da Rocha]]