# Membrane theory of entanglement dynamics
The **membrane theory** is an effective model designed to describe [[0522 Entanglement dynamics|entanglement dynamics]]. It captures more information than the [[0518 Quasiparticle model|quasiparticle model]].
In this model, the [[0301 Entanglement entropy|entanglement entropy]] is given by $S=s_{\mathrm{th}} \int d^{d-1} y \sqrt{-\gamma} \frac{\mathcal{E}(v)}{\sqrt{1-v^2}},$where $\mathcal{E}(v)$ is a *tension* that depends on the instantaneous velocity (or "angle") of the timelike membrane stretching between two constant-time slices of Minkowski spacetime. At this point, nothing is holographic yet.
Using holography, this model can be formulated using [[0007 RT surface|HRT]] surfaces.
## Refs
- [[2018#Jonay, Huse, Nahum]]
- 2d unitary random evolution
- conjecture of minimal membrane description of entanglement dynamics of large regions in generic chaotic systems
- [[2018#Mezei]]
- holographic proof
- arbitrary dimensions
- [[2019#Agon, Mezei]]
- reformulation using [[0211 Bit thread|bit threads]]
- [[2019#Mezei, Virrueta (Dec)]]
- generalisations (including [[0006 Higher-derivative gravity|HDG]] corrections, more general initial states, joining quenches, etc)
- contains a nice review of earlier work
- [[2023#Rampp, Rather, Claeys]]
- calculation in an exactly solvable model
- [[2024#Vardhan, Moudgalya]]
- Renyi entropy, universal low lying modes
- [[2024#Jiang, Mezei, Virrueta]]
- 2d CFT
## Membrane tension
- [[0327 Entanglement velocity|entanglement velocity]]
- $\mathcal{E}(0)=v_E$
- [[0167 Butterfly velocity|butterfly velocity]]
- $\mathcal{E}\left(v_B\right)=v_B$
- $\mathcal{E}^{\prime}\left(v_B\right)=1$