# Hod's universal relaxation bound
From quantum information theory, there is a bound on the maximum rate at which information may be transmitted by a signal of duration $\tau$:
$
\dot{I}_{\max }=\pi \Delta \mathcal{E} / \hbar \ln 2.
$
For BHs, [[Hod2006]] argues that this implies an upper bound on the entropy change:
$
\frac{\Delta S}{\tau} \leq \pi \Delta \mathcal{E} / \hbar
$
which implies that
$
\tau_{\min }=\hbar / \pi T
$
saying that a thermodynamic system has at least one perturbation mode whose relaxation time is $\tau_\text{min}$.
## Relation to [[0430 Holographic shear viscosity|shear viscosity]]
- [[Hod2009Essay]] derives [[0430 Holographic shear viscosity]] bound from the universal relaxation bound
## Relation to [[0208 Strong cosmic censorship|strong cosmic censorship]]
- see recent paper [[KonoplyaZhidenko2022]][](https://arxiv.org/pdf/2210.04314.pdf) and refs therein
## Refs
- OG: [[Hod2006]]
- [[Hod2007]]: extremal limit
- [[Hod2008]]: Kerr-Newman
- [[Hod2009Essay]]