# CMT for extremal BH
An extremal black hole in AdS corresponds to the zero-temperature limit of a boundary field theory via [[0001 AdS-CFT|holography]].
There is a subtlety in understanding [[0429 Hydrodynamics|hydrodynamics]] at zero temperature: $\omega\to0$ and $T\to0$ does not commute, so cannot just take a naive limit of finite-temperature results.
## Refs
- parent page: [[0432 AdS-CMT]]
- [[0340 Aretakis instability]]
- Kerr
- [[2017#Gralla, Zimmerman]]
- [[2018#Casals, Zimmerman]]
- planar
- [[2018#Gralla, Ravishankar, Zimmerman]]
- BTZ
- [[2019#Gralla, Ravishankar, Zimmerman]]
- [[0325 Quasi-normal modes|QNM]]
- [[1998#Freedman, Mathur, Matusis, Rastelli]]
- [[ChalmersNastaseSchalmSiebelink1998]]: hep-th/9805105
- [[0473 Retarded Green's function]]
- scalar and fermionic operators: [[2009#Faulkner, Liu, McGreevy, Vegh]]
- vector (charge current) and tensor (energy-momentum) operators: [[2009#Edalati, Jottar, Leigh]]
- [[0179 Pole skipping|pole skipping]]
- [[2020#Natsuume, Okamura]]
- extremal non-relativistic backgrounds
- [[ImeroniSinha2009]][](http://arxiv.org/abs/0907.1892)
- [[AdamsBrownDeWolfeRosen2009]][](http://arxiv.org/abs/0907.1920)
- zero-temperature [[0431 Holographic superconductor|holographic superconductor]]
- [[2009#Horowitz, Roberts]]