# Inverse soft construction
The inverse soft construction is an [[0551 On-shell recursion relations|on-shell recursion formula]] for constructing higher point scattering amplitudes from on-shell lower point ones.
Gluons, colour-ordered:
$A\left[1_{+} 23 \cdots n\right]=\frac{\langle n 2\rangle}{\langle n 1\rangle\langle 12\rangle} A[\hat{2} \cdots n-1 \hat{n}]$
Gluons, colour-dressed:$A\left(1_{+}^{a_1} 2^{a_2} \cdots n^{a_n}\right)=-\sum_{i=3}^n \frac{\langle i 2\rangle}{\langle i 1\rangle\langle 12\rangle} T_i^{a_1} A\left(\hat{2}^{a_2} \cdots \hat{i}^{a_i} \cdots n^{a_n}\right)$Gravitons:$M\left(1_{+} 2 \cdots n\right)=\sum_{i=3}^n \frac{[1 i]}{\langle 1 i\rangle} \frac{\langle i 2\rangle^2}{\langle 12\rangle^2} M(\hat{2} \cdots \hat{i} \cdots n)$where the shifted momenta are $\hat{p}_2^{\alpha \dot{\alpha}}=\lambda_2^\alpha \hat{\tilde{\lambda}}_2^{\dot{\alpha}}$, $\hat{p}_n^{\alpha \dot{\alpha}}=\lambda_n^\alpha \hat{\tilde{\lambda}}_n^{\dot{\alpha}}$, and $\hat{\tilde{\lambda}}_2=\tilde{\lambda}_2+\frac{\langle n 1\rangle}{\langle n 2\rangle} \tilde{\lambda}_1, \quad \hat{\tilde{\lambda}}_n=\tilde{\lambda}_n+\frac{\langle 12\rangle}{\langle n 2\rangle} \tilde{\lambda}_1.$
## Refs
- origin:
- [[2009#Arkani-Hamed, Cachazo, Cheung, Kaplan]]
- gravity MHV:
- [[2009#Nguyen, Spradlin, Volovich, Wen]]
- YM and gravity:
- [[2011#Boucher-Veronneau, Larkoski]]: derivation from [[0058 BCFW|BCFW]]
- N=4 SYM:
- [[2012#Nandan, Wen]]
- $F^3$ and $R^3$ theories:
- [[2023#Ananth, Bhave, Pandey, Pant]]
- double copy and soft recursion:
- [[2023#Hu, Zhou]]
## Applications
- obtaining subleading [[0009 Soft theorems|soft gluon theorem]]:
- [[2014#Casali]]
- using soft theorems to uniquely fix all tree-level amplitudes:
- [[2018#Rodina]]
- all-order [[0114 Celestial OPE|celestial OPE]]:
- [[2023#Ren, Schreiber, Sharma, Wang]]