# KMS condition
The Kobo-Martin-Schwinger (KMS) condition ensures $n$-point functions satisfy the appropriate fluctuation-dissipation theorems.
For example, in a local QFT, let there be $n$ points along a worldline, then KMS requires$\left\langle\phi_1(t_1) \phi_2(t_2) \ldots \phi_n(t_n)\right\rangle=\left\langle\phi_2(t_2) \ldots \phi_n(t_n) \phi_1(t_1+2 \pi i)\right\rangle.$
## Refs
- original:
- [[1957#Kubo]] and [[1959#Martin, Schwinger]]
- KMS condition in different inertial frames:
- [[2024#Passegger, Verch]]
- fixing the thermal [[0103 Two-point functions|two-point function]] using KMS
- [[2025#Buric, Gusev, Parnachev]]