# Wald entropy
Black hole entropy is Noether charge!
Introducing [[0019 Covariant phase space|covariant phase space formalism]], Wald showed that the [[0004 Black hole entropy|entropy]] of stationary black hole can be defined as the Noether charge corresponding to the boost symmetry of the spacetime. For a general [[0006 Higher-derivative gravity|higher derivative theory]], this method also gives a formula for the black hole in such theories, known as Wald entropy.
## Refs
- [[1993#Wald]]
## Derivation
- current: $\mathbf{j}=\mathbf{\Theta}\left(\phi, \mathcal{L}_{\xi} \phi\right)-\xi \cdot \mathbf{L}$
- can show $d \mathbf{j}=-\mathbf{E} \mathcal{L}_{\xi} \phi$ -> 0 when EoM is satisfied
- so $\mathbf{j}=d \mathbf{Q}$ when evaluated on solutions of EoM
- its variation $\delta \mathbf{j}=\delta\left[\mathbf{\Theta}\left(\phi, \mathcal{L}_{\xi} \phi\right)\right]-\xi \cdot \delta \mathbf{L}=\delta\left[\mathbf{\Theta}\left(\phi, \mathcal{L}_{\xi} \phi\right)\right]-\mathcal{L}_{\xi}[\mathbf{\Theta}(\phi, \delta \phi)]+d(\xi \cdot \mathbf{\Theta})$
- -> $\delta \mathbf{j}=\Omega\left(\phi, \delta \phi, \mathcal{L}_{\xi} \phi\right)+d(\xi \cdot \Theta)$
- energy and angular momentum
- $\delta \mathcal{E}=\int_{\infty}(\delta \mathbf{Q}[t]-t \cdot \mathbf{\Theta})$ -> $\mathcal{E}=\int_{\infty}(\mathbf{Q}[t]-t \cdot \mathbf{B})$ with $\delta \int_{\infty} t \cdot \mathbf{B}=\int_{\infty} t \cdot \mathbf{\Theta}$
- $\delta \mathcal{J}=-\int_{\infty} \delta Q[\varphi]$ -> $\mathcal{J}=-\int_{\infty} \mathbf{Q}[\varphi]$
- choose the Killing field of the (rotating) BH
- $\xi^{a}=t^{a}+\Omega_{H}^{(\mu)} \varphi_{(\mu)}^{a}$
- $\xi^a$ is the Killing field, which vanishes on the bifurcation surface $\Sigma$
- $t^a$ is the stationary Killing field with unit norm at infinity
- now Let $\delta \phi$ be an arbitrary, asymptotically flat solution of the linearised equations
- the current identity above becomes $d(\delta \mathbf{Q})=d(\xi \cdot \mathbf{\Theta})$
- because $\mathbf{\Omega}\left(\phi, \delta \phi, \mathcal{L}_{\xi} \phi\right)=0$ as $\mathcal{L}_{\xi} \phi=0$ (Killing field)
- taking all above:
- $\delta \int_{\Sigma} \mathbf{Q}=\delta \mathcal{E}-\Omega_{H}^{(\mu)} \delta \mathcal{J}_{(\mu)}$
- now identify LHS as entropy
## Related
- [[0004 Black hole entropy]]
- [[0018 JKM ambiguity]]