# $f(R)$ gravity
$f(R)$ gravity refers to a special class of [[0006 Higher-derivative gravity|higher-curvature gravity]] where the Lagrangian takes the form$S=\frac{1}{2 \kappa} \int d^4 x \sqrt{-g} f(R)+S_M,$where $f(R)$ is a general function of the Ricci scalar, and its equation of motion is given by $f^{\prime}(R) R_{\mu \nu}-\frac{1}{2} f(R) g_{\mu \nu}-\left[\nabla_{\mu} \nabla_{\nu}-g_{\mu \nu} \square\right] f^{\prime}(R)=\kappa T_{\mu \nu}.$
## [[0161 Palatini formalism|Palatini formulation]]
- treat the connection as an independent field
- the action looks the same but the degrees of freedom are different
## Equivalence to a [[0140 Scalar-tensor theory|scalar-tensor]] theory
- $S=\int d^{D} x \sqrt{-g}\left[f(\phi)+f^{\prime}(\phi)(R-\phi)\right]$
- using EOM for the scalar $f^{\prime\prime}(\phi)(R-\phi)=0$
- get back $f(R)$ as long as $f^{\prime\prime}(\phi)\ne0$
## Refs
- reviews
- [[SotiriouFaraoni2008]][](https://arxiv.org/pdf/0805.1726.pdf)
- shorter version [[Sotiriou2009Review]][](https://iopscience.iop.org/article/10.1088/1742-6596/189/1/012039/pdf)
- [[DeFeliceTsujikawa2010Review]][](https://arxiv.org/abs/1002.4928)
- [[EzawaKajiharaKiminamiSodaYano1998]]
- [[DeruelleSendoudaYoussef2009]]
- equivalent to a [[0140 Scalar-tensor theory|scalar-tensor]]
- [[1983#Teyssandier, Tourrenc]]
- in the Einstein limit [[2007#Olmo]]
- boundary term of f(R) by direct variation
- [[GuarnizoCastanedaTejeiro2010]][](https://arxiv.org/abs/1002.0617)
- [[AlhamzawiAlhamzawi2014]]
- Jordan frame
- [[DeruelleSendoudaYoussef2009]][](https://arxiv.org/abs/0906.4983)
- [[KlusonMatous2022]][](https://arxiv.org/pdf/2209.14560.pdf)