# ETH matrix model $\mathcal{Z}_{\mathrm{ETH}}=\int d \mu[H] d \mu[\mathcal{O}] e^{-\mathcal{V}[H, \mathcal{O}]}$ $\mathcal{Z}_{\mathrm{ETH}}=\int d \mu[H] d \mu[\mathcal{O}] \exp \left(e^{S_0} \sum_{n \geq 2} \sum_{a_1 \cdots a_n} G^{(n)}\left(E_{a_1}, \cdots, E_{a_n}\right) \mathcal{O}_{a_1 a_2} \mathcal{O}_{a_2 a_3} \cdots \mathcal{O}_{a_n a_1}\right)$ ## Refs - original: [[2022#Jafferis, Kolchmeyer, Mukhametzhanov, Sonner (Short)]] and [[2022#Jafferis, Kolchmeyer, Mukhametzhanov, Sonner (Long)]] - solvable limit: [[2023#Okuyama, Suyama]]